US009092470B2

a2z United States Patent (10) Patent No.: US 9,092,470 B2
Schreck (45) Date of Patent: Jul. 28, 2015
(54) METHOD AND SYSTEM FOR STORING 7,296,112 B1* 11/2007 Yarlagaddaetal. 711/105

TABULAR DATA IN A MEMORY-EFFICIENT
MANNER

(71) Applicant: SOFTWARE AG, Darmstadt (DE)

(72) Inventor: Daniel U. Schreck, Saarbriicken (DE)

(73) Assignee: SOFTWARE AG, Darmstadt (DE)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35

U.S.C. 154(b) by 11 days.
(21) Appl. No.: 13/648,673

(22) Filed: Oct. 10,2012

(65) Prior Publication Data
US 2014/0059085 A1 Feb. 27,2014

(30) Foreign Application Priority Data

Aug. 24,2012 (EP) woovvooveeeceeeeeeeeeeeee 12181657

(51) Imt.ClL
GO6F 17/30
(52) US.CL
CPC ..o, GO6F 17/30315 (2013.01)
(58) Field of Classification Search
USPC 707/791, 801, 812, 783, 100; 711/144,
711/172, 105
See application file for complete search history.

(2006.01)

(56) References Cited
U.S. PATENT DOCUMENTS

4,908,789 A * 3/1990 Blokkumetal. T11/172
5,537,588 A * 7/1996 Engelmann etal. . 711/144
6,715,063 B1* 3/2004 McGrathc.ccoovrnreen. 712/233

7,600,037 B2* 10/2009 Tucker
7,885,988 B2* 2/2011 Bashyam et al.
8,452,737 B2* 5/2013 Netzetal.
8,527,544 B1* 9/2013 Colgroveetal. ...
2002/0029282 Al* 3/2002 Buddhikot et al
2005/0102297 Al* 5/2005 Lloydetal. ...
2007/0061544 Al 3/2007 Uppala
2010/0030796 Al 2/2010 Netz et al.

... 709/235
.. 707/812
.. 707/687
.. 707/791
.. 709/231
.. 707/100

2011/0082887 Al* 4/2011 Friedlanderetal. 707/783
2011/0252073 Al* 10/2011 Paulyccooevvvvivnnnn. 707/812
2011/0264667 Al 10/2011 Harizopoulos et al.

OTHER PUBLICATIONS

M. Ivanova, et al., “Self-Organizing Strategies for a Column-Store
Database,” Proceedings of the 11” International Conference on
Extending Database Technology Advances in Database Technology,
EDBT, Mar. 25, 2008, pp. 157-168.

(Continued)

Primary Examiner — Mariela Reyes
Assistant Examiner — Thong Vu
(74) Attorney, Agent, or Firm — Nixon & Vanderhye PC

(57) ABSTRACT

Certain example embodiments relate to a method of storing
data in a tabular data structure having columns and rows in a
column-oriented storage system. At least one of the columns
is divided into a plurality of segments. Each segment has an
associated cell size that indicates the maximum size of the
data items in the respective segment. When storing a data item
into one of the segments, it is determined whether the size of
the data item exceeds the cell size of the segment; and if the
size of the data item exceeds the cell size of the segment, the
cell size of the segment is adapted to accommodate the size of
the data item. The adapting of the cell size of the segment to
accommodate the size of the data item is performed indepen-
dent of the cell sizes of the other of the plurality of segments.

21 Claims, 7 Drawing Sheets

add row

100

find free
Tow

| 105

grow
segment cell
size

add value
to column

decode row 110

number into
segment & cell
115
segment of create new
row exists? segment

yes

value fits into
segment cell?

yes

write value into| 125
segment cell

value
added

US 9,092,470 B2
Page 2

(56) References Cited

OTHER PUBLICATIONS

M. Stonebraker, et al., “C-Store: A Column-Oriented DBMS,” Pro-
ceedings of the 31 VLDB Conference, 2005, pp. 553-564.

George P. Copeland and Setrag N. Khoshafian, 1985. A decomposi-
tion storage model. In Proceedings of the 1985 ACM SIGMOD

international conference on Management of data (SIGMOD °’85).
ACM, New York, NY, USA, 268-279.

* cited by examiner

U.S. Patent Jul. 28, 2015 Sheet 1 of 7 US 9,092,470 B2

Fig. 1
C1 Cz2
Row ,Duration” Row ,Quantity”
0 78) 0 2130
1 5 1 18206
S3
2 90 2 78
> S1
3 43 3 9521
4 15
5 23) 4 12
5 67 g
4
6 12
6 | 523) 7|7
7 302
8 6887 8 589
> S2
9 58 9 31
S5
10 20 10 12675
11 18791 y 11 10785

U.S. Patent Jul. 28, 2015 Sheet 2 of 7 US 9,092,470 B2

Fig. 2a

Row ; Age . Quantity

o . e |28

1 17 12

FETT SPSR. SNSRI SERNENERNI. SR R

2 23 .| 63
3

s FEPIVRIFRRREREE

42 15

4 3 95
5

sz et B BB

32 135

A 2 100 A S S 00 e LS L 000 AR AT AR5 83000

6 . 12 | |87
? N

58 24

92 12

N . pre:allocated

11 ¢ emptyrows

U.S. Patent

US 9,092,470 B2

Jul. 28, 2015 Sheet 3 of 7
Fig. 2b

Row Age Quantity
O 64 28
1 17 12
Z 23 63
3 42 15
4 8 95
3 32 35
5 26 27
7 58 24
8 92 12
9 70 7
10 30 1235
.

U.S. Patent Jul. 28, 2015 Sheet 4 of 7 US 9,092,470 B2

Fig. 3
add value
to column
add row
decode row %z 110
100 number into
segment & cell
s
segment of create new
row exists? segment
for each
column: add | 105 120
I
A s gre(m/ cell value fits into
gn;ize segment cell?
row es
G — J
]
write value into] 1235
segment cell “
value
added

U.S. Patent

Jul. 28, 2015

Sheet S of 7

Fig. 4

US 9,092,470 B2

for each

column:

update
value

update
value in
column

decode row
number into
segment & cell

'

value fits into
segment ceifl?

grow
segment cell
size

write value into
segment cell

value
updated

U.S. Patent

Jul. 28, 2015 Sheet 6 of 7 US 9,092,470 B2

Fig. 5

Erow
spgment
call size

130
determine new +~ 3
cell size

.

afibcatamew |~ 139
segruant

copy cell into 4~ 140
new segment

celis pending?

reference new |~ 145
segment |

ki

dispose old |~ 150
segment

.

el
segment
grown

U.S. Patent Jul. 28, 2015 Sheet 7 of 7 US 9,092,470 B2

Fig. 6 (Prior Art)

1 C2 C3 C4
[| |] 7"
R1 |EmpId||Lastname||Firstname||Salary|
N |Smith |[Joe 140000 |

R
R; \|2 ||Jones ||Mary ||50000 |
\|3 |Johnson |[Cathy]144000 |

US 9,092,470 B2

1
METHOD AND SYSTEM FOR STORING
TABULAR DATA IN A MEMORY-EFFICIENT
MANNER

This application claims priority to EP Application No. 12
181 657.3, filed Aug. 24, 2012, the entire contents of which is
hereby incorporated by reference.

1. TECHNICAL FIELD

Certain example embodiments of the present invention
relate to a method and system for storing data in a tabular data
structure.

2. BACKGROUND AND SUMMARY

Modern computer systems oftentimes operate on tabular
data, i.e. data which is structured as a two-dimensional table,
wherein each data item (also called “cell”) can be addressed
by its column and row number. Popular examples of systems
supporting such tabular data structures are database systems,
such as relational database systems. The theoretical concepts
underlying tabular data storage approaches have been the
subject of scientific research dating back to the 1970s (for an
overview see e.g. G. Copeland et al.: “A decomposition stor-
age model”, Proceedings of the 1985 ACM SIGMOD inter-
national conference on Management of data (SIGMOD ’85).
ACM, New York, N.Y., USA, 268-279).

Accordingly, on a conceptual level tabular data can be
understood as a two-dimensional table. However, when stor-
ing such data the two-dimensional data must be serialized into
aone-dimensional sequence of bits in order to be stored in the
working memory (e.g. RAM) and/or persistent storage means
(e.g. hard drive) of the underlying computer hardware. To this
end, most conventional database management systems
(DBMS) follow the so-called row oriented approach, in that
the two-dimensional table is stored one row after the other.
Another approach is followed by so-called column-oriented
DBMS, which store their data tables as series of columns.
Both approaches have their individual advantages and draw-
backs, e.g. column-oriented systems are more efficient when
an aggregate needs to be computed over many rows but only
for a notably smaller subset of all columns of data, because
reading that smaller subset of data can be faster than reading
all data. On the other hand, row-oriented systems are more
efficient when many columns of a single row are required at
the same time, and when row-size is relatively small, as the
entire row can be retrieved with a single disk seek. Regardless
of the used storage strategy, a physical storage allowing fast
random access reads can greatly increase the operation speed.
The random access allows minimizing the amount of read
data in case of queries where only few fields and few rows
have to be read. It achieves this because only the individual
cells of interest have to be transferred from the storage. Find-
ing those individual cells is easiest and fastest if all cells of a
type have the same size because the address of the cell can
then be calculated through a simple multiplication.

A further obstacle which affects both approaches is that the
data in a table is seldom static, since new rows are frequently
added, deleted, and cell values may be changed. For example,
if a cell is added to a column and that cell does not fit into the
number of bits available per cell in this column, the underly-
ing data structure of the column has to be adapted. In particu-
lar in row-oriented storage models, the costs to change a
column’s width (i.e. the number of bits available per cell) may
be prohibitive, since whole rows must be re-coded, effec-
tively resulting in the whole table being converted.

10

15

20

25

30

35

40

45

50

55

60

65

2

Inthe column-oriented storage model, a simple strategy for
adapting the data structure is to increase the number of bits
per cell for the affected column. This strategy, however, has
two drawbacks that become particularly relevant if the col-
umn is large. Firstly, all the cells of the old structure with the
old cell capacity need to be transformed into the new structure
with the increased cell capacity. Secondly, as long as this
transformation is running, the amount of memory allocated
for the old and new data structures together is more than twice
as large as that of the old structure alone. This means on the
one hand, that the system must provide a lot more memory
than is actually needed outside the transformation operation.
Secondly, there is additional effort for the automatic memory
management system that operating environments usually
provide nowadays.

The load on automatic memory management systems is
particularly problematic in devices with very limited
resources in terms of computing power and/or memory access
speed, such as embedded systems or smartphones. On the
other end of the spectrum, applications on large server class
machines using many gigabytes of working memory can also
run into issues resulting from high load on automatic memory
management and the resulting loss in computing power and
responsiveness.

In summary, conventional compressed column-oriented
storage systems for frequently changing tabular data suffer
from the following drawbacks: increased processing time to
transform data of a column, and temporarily doubled memory
consumption (with its associated load on automatic memory
management).

It is therefore the technical problem underlying certain
example embodiments of the present invention to provide an
improved method and system for storing tabular data which is
more resource efficient in terms of memory and processing
power consumption, thereby at least partly overcoming the
above explained disadvantages of the prior art.

This problem is according to one aspect of the invention
solved by a method of storing data in a tabular data structure
having columns and rows in a column-oriented storage sys-
tem (e.g. a database, a database management system (i.e. a
system comprising a database and processing logic for
accessing the database), or any other storage system operable
to store tabular data, i.e. most generally denoted a “table
store”). In the embodiment of claim 1, the method comprises
the steps of:

a. dividing at least one of the columns into a plurality of
segments, wherein each segment has an associated cell size
which indicates the maximum size of the data items in the
respective segment;

b. when storing a data item into one of the segments,
determining whether the size of the data item exceeds the

cell size of the segment; and

if the size of the data item exceeds the cell size of the

segment, adapting the cell size of the segment to accom-
modate the size of the data item;

c. wherein adapting the cell size of the segment to accommo-
date the size of the data item is performed independent of
the cell sizes of the other of the plurality of segments.
Accordingly, the embodiment is based on the general con-

cept of splitting the column(s) of a table into smaller sub-units

called segments. Each data item within a segment has the
same size (e.g. the number of bits allocated for storing a data
item) indicated by the segment’s cell size, but the different
segments may have different cell sizes. This way, it is possible
to have e.g. a column with two segments, wherein the first
segment stores data items with only 128 bits, while the second
segment stores data items having 256 bits. As can be seen, this

US 9,092,470 B2

3

approach has considerable advantages when a new data item
is added to a table segment which exceeds the segment’s
maximum cell size. This is because in this case, only the cell
size of the affected segment needs to be adapted (in this case:
increased) to accommodate the size of the new data item, but
the other segments do not have to be adapted. This is benefi-
cial both in terms of performance (since only a subset of the
column needs to be adapted, namely the affected segment)
and memory consumption (since the segments can be chosen
to require only a minimum amount of storage capacity). In
summary, splitting a column into multiple subunits (seg-
ments) allows for a more fine-grained memory optimization.
It should be noted that since the adaptation of the affected
segment’s cell size is preferably performed when a new data
item is to be stored into the table, the above-explained
approach is particularly flexible, dynamic and self-optimiz-
ing. However, the general concept of adapting the cell sizes on
a per-segment-level may in alternative embodiments also be
employed independent of a specific request for storing a new
data item, such as periodically (e.g. as a background process)
or manually by an administrator.

In another aspect of the present invention each segment has
an associated segment size which indicates the maximum
number of data items in the respective segment (of course, the
segment sizes may differ between columns). Preferably, all
segments of a column have the same segment size. Accord-
ingly, not only the size of the individual data items within a
segment can be limited by an upper boundary (the above-
explained cell size), but also the number of data items allowed
per segment (by means of the segment size). Choosing an
optimal segment size can lead to considerable performance
and memory usage improvements, as will be explained in
more detail further below. Furthermore, if all segments of a
given column have the same segment size, the address calcu-
lation of the individual data items is particularly fast and
efficient.

Furthermore, the method may comprise a step of determin-
ing an optimal segment size based on characteristics of the
underlying hardware system, such as a bandwidth between
the working memory and the processor. Additionally or alter-
natively, the step of determining an optimal segment size may
be based on statistics on the data stored in the tabular data
structure and/or on the frequency of addition, update and/or
removal operations performed on the data of the tabular data
structure. Also, the step of determining an optimal segment
size may be performed: (a) automatically when data is added,
updated and/or removed (i.e. the determination of the optimal
segment size is both automatic (i.e. self-optimizing) and
dynamic); (b) automatically and periodically (i.e automatic
and non-dynamic), and/or (¢) manually.

Since the method of the embodiment of claim 1 operates in
a column-oriented storage system, the columns of the tabular
data structure are preferably stored one after the other in a
working memory and/or persistent storage means of the stor-
age system. Accordingly, this aspect follows the column-
oriented approach explained in the introductory part above
(also called columnar table storage). This aspect is particu-
larly efficient for minimizing the memory consumption of the
tabular data, as the data items of one column (usually) have
the same data type and a similar memory consumption. Of
course, it is also advantageous when an entire new column
needs to be added to an existing table, since in this case the
new column can be simply appended to the serialized one-
dimensional data structure. In other words, segmenting the
data values on a column-basis is particularly advantageous,
since the values of one particular column typically fall into
the same value range and thus each have a similar memory

30

40

45

50

55

4

requirement. The cells of a row, on the contrary, typically
have quite different memory requirements. Combining the
column-oriented segmenting with the column-oriented stor-
age model is particularly advantageous, since if the row-
oriented storage model was used, changing the cell size
would require to copy/move all cells of the segment and not
only the cells of the particular column. It should be noted that
while in the column-orientated approach the data is generally
stored by column, a particular column is not necessarily con-
tiguous as if one of its segments has had to be adapted to cope
with change of cell size it may no longer be in its original
place in the memory.

Moreover, the method may comprise the further steps of
providing a dictionary data structure which maps data items
to integer values and storing the integer value in the tabular
data structure instead of the data item. Accordingly, instead of
the actual data item (e.g. a data item of type “text” with the
value “Smith”) only a simple integer value (e.g. “123”) is
stored in the table and/or respectively in the serialized
memory representation, which leads to less memory con-
sumption, since the data is effectively compressed. To achieve
such a compression, a dictionary is then provided which maps
the data items to the integer values (in the sense of
“Smith”="“123"), so that the data can be resolved.

Preferably, adapting the cell size of the segment to accom-
modate the size of the data item comprises selecting a mini-
mum number of bits needed for storing the biggest data item
in the respective column. This way, the memory representa-
tion of the table data structure can be kept as small as possible.

Certain example embodiments of the present invention are
also directed to a computer program comprising instructions
for implementing any of the above-described methods.
Lastly, also a column-oriented storage system is provided for
storing data in a tabular data structure having columns and
rows, wherein the system comprises means for dividing at
least one of the columns into a plurality of segments, wherein
each segment has an associated cell size which indicates the
maximum size of the data items in the respective segment;
means for storing a data item into one of the segments,
adapted for determining whether the size of the data item
exceeds the cell size of the segment, and if the size of the data
item exceeds the cell size of the segment, adapting the cell
size of the segment to accommodate the size of the data item;
wherein adapting the cell size of the segment to accommodate
the size of the data item is performed independent of the cell
sizes of the other of the plurality of segments.

Further advantageous modifications of embodiments of the
system of the invention are defined in further dependent
claims. It will be appreciated that such embodiments of the
system may be adapted to perform in accordance with any of
the above-described methods.

3. SHORT DESCRIPTION OF THE DRAWINGS

In the following detailed description, presently preferred
embodiments of the invention are described with reference to
the following figures:

FIG. 1: An exemplary tabular data structure with two col-
umns divided into segments in accordance with an embodi-
ment of the invention;

FIG. 2a: An exemplary tabular data structure in accordance
with an embodiment of the invention before adding a new
rOw;

FIG. 2b: The exemplary tabular data structure of FIG. 2a
after the new row was added;

FIG. 3.: A flow chart illustrating the process of adding a
row in accordance with an embodiment of the invention;

US 9,092,470 B2

5

FIG. 4: A flow chart illustrating the process of updating a
row in accordance with an embodiment of the invention;

FIG. 5: A flow chart illustrating the process of adapting the
cell size of a segment in accordance with an embodiment of
the invention; and

FIG. 6: A schematic illustration of a tabular data structure
according to the prior art.

4. DETAILED DESCRIPTION

Certain example embodiments of the present invention
generally relate to techniques for storing tabular data in the
(limited) main memory of a computer system in a particularly
memory-efficient manner. A tabular data structure, as used in
most database systems or other table stores, can be under-
stood on a conceptual level as a two-dimensional table of
rows and columns, in which individual data cells are stored.

FIG. 6 shows a simple example of such a tabular data
structure, namely a table storing data of employees together
with their salaries. As can be seen in FIG. 6, the exemplary
table comprises four columns C1, . . . , C4 and three rows
R1, ..., R3. It will be appreciated, however, that certain
example embodiments of the present invention support tabu-
lar data structures having any number of columns C and rows
R. Thus, tabular data can be understood as a table data struc-
ture where each column of the table can have a different data
type, while the data type of each cell within one particular
column is the same for the entire column. In the above
example, all cells of the columns C2 “Lastname” and C3
“Firstname” comprise text (e.g. of the data type “String”),
while the cells of the columns C1 “Empld” and C4 “Salary”
comprise numbers (e.g. of the data type “integer™).

Embodiments of the invention allow fitting as much data as
possible into the limited memory of a computer system, as the
tables may be huge. Embodiments of the invention also allow
growing the tables by adding rows R without rebuilding the
table completely. Further, embodiments of the invention
allow for replacing and/or deleting values without rebuilding
the table completely. In addition, whole columns C may be as
easily added, replaced and/or removed. All of these problems
are solved by certain embodiments of the invention by using
a table representation with variable word-width columns C
divided into multiple segments S, and managing the table by
an intelligent online algorithm.

In the following, three characteristics of a preferred
embodiment of the present invention are described, namely
(a) columnar table storage, (b) compression via a dictionary
and (c) compression through choice of optimal data type.
However, the present invention also encompasses embodi-
ments having only a subset of these characteristics, as well as
further embodiments having none of the characteristics (a)-
(c), but only the further characteristics explained further
below. For example, the present inventive concept of seg-
menting the columns of a tabular data structure would also be
generally conceivable in a row-oriented storage system.
Columnar Table Storage

As explained above, a table data structure, as e.g. the table
of FIG. 6, is conceptually a two-dimensional data structure.
However, when such data structures are stored into the work-
ing memory (e.g. RAM) and/or persistent storage means (e.g.
hard drive) of the underlying computer system, the storage
system must serialize the two-dimensional structure into a
one-dimensional series of bytes for the operating system to
write to either the RAM, hard drive or both.

5

10

15

20

25

30

35

40

45

50

55

60

65

6

To this end, so-called row-oriented storage systems serial-
ize all of the cells in a row R together, then the cells in the next
row, and so on. Given the exemplary table of FIG. 6, this
would result in the following:

1,Smith,Joe,40000;2,Jones,Mary,50000;3,Johnson,Cathy,

44000

On the other hand, so-called column-oriented storage sys-
tems serialize all of the cells of a column C together, then the
cells of the next column C, and so on:

1,2,3;Smith,Jones,Johnson;Joe,Mary,Cathy;40000,

50000,44000;

Accordingly, in this strategy, the columns C are repre-
sented as a sequence of cells. All cells of a column C have the
same data type. Each cell is addressed by specifying the
column C and the row R number of the cell. There is only at
most one cell for each address. The data ofa record (i.e. arow)
in the table is spread over all the columns C of the table, but
can be found under the same row number in each of the
columns C.

A column C can have one of a plurality of different data
types, e.g. integer number, floating point number, text, times-
tamp, or the like. Conceptually, the column C is a sequence of
cells of the column data type, where each cell can be accessed
by its row number.

Ifall cells in a column C have uniform size, the row number
is the position in the sequence of cells. Then the cell of some
given row R can be directly addressed without any need for
searching it.

Compression Via a Dictionary

A dictionary can be used to map individual complex values
onto simpler values. In case of text data this means that each
unique character sequence is mapped onto an integer value.
This dictionary compression compresses the data if values
occur multiple times in a column C, because the recurring text
is only stored once in the dictionary. This is one of the core
ideas of the popular DEFLATE compression algorithm.

Applied to columnar storage (see above), this means that
only the integer value is stored in the column cells. The
dictionary is then used to translate from text to integer and
back when interpreting the query and assembling the
response. In embodiments of the invention, the fact that all
cells contain simple integers reduces the query processing
time, because no text parsing is needed while searching val-
ues in the table.

Compression Through Choice of Optimal Data Type

Generally, the memory consumption of a given table
should be minimized, so that it allows fitting more data into
memory while reducing the load on memory buses and
caches, resulting in higher query processing speed. It is thus
advisable to use as few bits as possible for representing indi-
vidual integer numbers in the column C. Still, random access
to an individual cell is fastest if all cells have the same capac-
ity (i.e. number of bits) and the address calculation is a simple
multiplication of row number and cell capacity. Therefore,
the cell capacity is preferably the same for all cells, but at the
same time only the minimum number of bits needed for
storing the biggest integer number currently in the column C
is used.

Column Segmentation

Considerable improvements in terms of memory consump-
tion can be achieved over the prior art strategies by splitting
each column C into multiple segments S. Each segment S
preferably contains the same number of cells, so that the
segment S addressed by a row number can be easily calcu-
lated. Still, between different columns C, the number of cells
per segment S may differ.

US 9,092,470 B2

7

All segments S of a column C share the same data type, but
each segment S has its own cell capacity (also referred to as
“cell size”, i.e. the capacity/size of an individual data item/
cell within a column). If one segment S needs to grow to a
bigger cell capacity it can do so without any needed changes
to other segment(s) S. The cell capacity of the segments S
may then differ.

FIG. 1 shows a simple example of a table comprising two
columns C (labeled “Duration” and “Quantity”) and 12 rows
R (numbered “0” to “11”). As can be seen, the column C1
“Duration” is split into a first segment S1 spanning rows 0 to
5 and into a second segment S2 spanning rows 6 to 11. The
column C2 “Quantity” is split into three segments S3-S5,
spanning rows 010 3,4 to 7 and 8 to 11, respectively (i.e. the
segments in column C1 have a segment size of 6, and the
segments in column C2 have a segment size of 4). It can be
seen in FIG. 1 that the cells of each segment S may have a
different size, i.e. the segments S may have different cell
capacities (illustrated by the different widths of the segments;
note that e.g. segment S3 has a bigger cell capacity than
segment S4). Within a particular column C, all segments have
the same segment size (although alternative embodiments of
the invention are conceivable in which the segment sizes of
the segments within a particular column may differ).

If a new row R is about to be added to the table, it is added
under any free row number, and for each column C the cor-
responding column segment S is checked whether it has a cell
capacity suitable to store the new cell value. If the cell capac-
ity is not sufficient, the column segment S is replaced by a new
one with sufficient capacity and the existing values are
migrated into the new segment S.

Optional Feature: Tradeoffs

The segment size (i.e. the maximum number of cells in a
segment S) can be used for tuning the amount of additional
temporary memory needed while migrating data into new
columns. Further, if a segment S is allocated for storing many
cells, but contains only few at a given point in time, the
memory is wasted. For both reasons, smaller segment sizes
are preferred. Those two goals, however, need to be balanced
with two others. Firstly, the memory overhead per segment S
becomes prohibitive if segments S are very small and numer-
ous. Secondly, memory accesses to consecutive data are usu-
ally faster. Longer, medium sized segments S, therefore, may
eventually lead to faster query processing.

The cell capacity growth factor influences how often the
segment migration operation has to be performed. It also
influences the amount of wasted memory if the cell capacity
is bigger than needed for the value stored in the cell. When
choosing the cell capacity there is thus a tradeoff between
those two goals.

Optional Feature: Self-Adapting Segment Sizing

In order to make certain example embodiments of the
present invention perform near-optimal for all constellations
of data, mechanisms are proposed to automatically tune
parameters towards the desired tradeoft goals.

Generally speaking, the segment size should fit to the prop-
erties of the execution environment. The absolute minimum
segment size should be such that the bandwidth from main
memory to the processor core is maximally exploited.
Memory arrangement and cache sizes also play a role in this
respect. Measurements may be used to find a good segment
size for a concrete environment.

Ifthereis a sizing deemed “optimal” for a certain execution
environment it will be expressed in data words, rather than in
number of cells. In order to have the optimal segment size in
number of words it may be a good idea to choose a segment
size (in number of cells), that results in the optimal number of

30

35

40

45

50

55

8

words per segment S, if the segment S uses the optimal cell

size. For example, if the optimal segment size in words is 128

and most cells have a size of two words, 64 cells is the optimal

segment size. Statistics about existing data may be used to

predict good parameters for new segments S.

If data is completely re-imported the statistics of the col-
umns contents before the re-import may provide a good
guideline for the sizing of the new segments S in terms of the
expected total number of rows R. It would also be possible to
re-use the existing segments S, but then no optimization of the
sizing can be performed.

Apart from the segment size, i.e. the maximum number of
cells per segment, the allocated size of the cells (i.e. the cell
capacity) also has a big influence on both the memory con-
sumption and possibly also on the frequency with which
segments S need to be converted into a bigger cell size. The
minimum and maximum values of the existing cells of a
column value are often good predictors for the new values
arriving through updates or additions. Thus, if new segments
S are allocated with a cell size big enough, many conversions
of segments S to a bigger cell size can be avoided.

The frequency of updates and removals may also be used as
a guideline. If these operations often lead to segments S being
converted into a different cell size, segments S should prob-
ably be smaller, as this can limit the effort for individual
conversion operations.

Preferred Embodiment of the Method of the Invention
In the following, a preferred way of carrying out the inven-

tion will be described by means of several operations per-

formed on the tabular data structures.

Reading Data from a Row
Reading data from a row R requires for each column C that

shall be read:

1. To decode the row number into segment number in the
column C and number within the segment S.

2. To read the cell value from the segment S.

3. Ifthe column C has an associated dictionary (see above), to
translate the cell value from the simple integer to the more
complex data type.

Adding a Row
The process of adding a new row R to a tabular data struc-

ture is illustrated in FIG. 3. The process starts at step 100

(“find free row”). To add a new row R, first a free row number

has to be found (e.g. the highest existing row number plus

one). Then, the new cell values need to be added into the
identified row R, each to its respective column C (cf. step

105). Let us assume that the cell values are just integer num-

bers and any dictionary operations (see above) have already

taken place.

To add the cell value to a column C, the row number has to
be decoded into the corresponding segment number and the
cell number within the segment S (cf. step 110). When all
segments S have the same size, the decoding is achieved
through dividing the row number by the segment size (let the
first row number be zero). The resulting quotient is the seg-
ment number and the remainder is the cell number within the
segment S.

If there is not yet a segment S with the given segment
number (because the row number corresponds to the table
size), a new segment S is created (cf. step 115). The new
segment S must have the same length (also referred to as
“segment size”) as the existing segments S in the respective
column of the table. Its cell size can be determined as
explained further above. Of course, it should be at least as big
as required to accommodate the new cell value to be added.

US 9,092,470 B2

9

In the alternative case that the segment S for the row R
already exists, it has to be ensured that the new cell value fits
into the cell size of the existing segment. If not, the segment
cell size must be grown, i.e. expanded (cf. step 120), which is
described further below.

In any case, the segment S is then ready to accommodate
the new value and the new value can be written into the
appropriate cell (cf. step 125).

As shown in FIG. 3, the process iterates (cf. step 105) inthe
same manner with all other columns C of the table until all
have been extended with the new value.

An example of the above operation is shown in FIGS. 2a
and 2b, where a new row “30;1235” is added to an existing
table. Here, a new row is to be added behind all already
existing rows. Since the table of FIG. 2q already comprises
rows 0 to 9, the new row is added as row number 10. In the
example, the row number 10 falls into the second segment of
both columns. However, in column “Quantity” the second
segment has a cell size too small for the new value “1235”
(since this segment is currently sized to host the cells “87”,
“24”,412” and *“77). Therefore, the segment cell size is grown
before the value is added. The result is shown in FIG. 25,
which illustrates that the second segment of the column
“Quantity” was grown (note the larger width as compared to
FIG. 2a) in order to accommodate the new cell value “1235”.
Growing the Segment Cell Size

The process of growing/expanding the segment cell size
(cf. step 120 in FIG. 3) is shown in FIG. 5. Similar to the
process of creating a new segment S, a new cell size must be
chosen (cf. step 130 in FIG. 5), which should be at least as big
as needed for the newly added cell value. Afterwards, a new
segment S is allocated (cf. step 135) and the contents of the
old segment S are copied into it cell by cell (cf. step 140).
Finally, the reference to the old segment S is changed to point
to the new segment S (cf. step 145) and the memory allocated
to the old segment S is freed (cf. step 150).

Updating a Row

The process of updating existing cell values, which is
shown in FIG. 4, is similar to the strategy of adding new cell
values shown in FIG. 3.

Removing a Row

Removals can be realized by either marking the removed
row R as “removed” or by copying the very last row R into the
position of the removed row R, which may in turn require
segment migrations. In the former case, the step “find free
row” (step 100 in FIG. 3) must check the table for a row R
marked as removed and if there is none, return the number of
the row R after the last row R. In the latter case, it can directly
return that number without checking for a mark beforehand.
Glossary

Cell: A space in a table where a value is located. The cell
can be addressed by specifying its row and column number.

Cell size: The amount of information that a data cell can
hold, which also determines the amount of main memory that
it occupies.

Segment size: The maximum amount of data cells in a
segment.

Word: As used herein, the smallest unit of memory addres-
sable in the underlying computer system.

Pseudo Code for Adding, Updating and Deleting Rows

In the following, an implementation of a preferred embodi-
ment of the invention is explained by means of pseudo-code
listings. Underlined text indicates the beginning of either a
data type or a procedure declaration. Italic text contains com-
ments. Indentation matters.

10

15

20

25

30

35

40

45

50

55

60

65

10

Data structures
a table consists of:
columus (numbered from 0 upwards)
maximum row number (greatest used row number)
list of free row numbers
a column consists of:
segments
segment size
a segment consists of:
cells
(can determine the cell capacity by inspecting any cell)
acell is either:
an integer cell (with n-bits)
or a floating point cell
An n-bit integer cell shall contain one binary coded
integer number stoved in n bits of memory.
a row consists of:
flelds (numbered from 0 upwards, with numbers
corresponding to the column numbers of the table)
a field is either:
an integer field,
a floating point field
or a text field
For the sake of simplicity we only look at integer fields
and integer columns here.
Procedures
how to add a new row to a table:
pick any free row number y
for each integer field of the row
determine the column corresponding to the field
add the field value to the y-th cell of the column
for each other field of the row
(omitted for brevity)
how to update a row in a table given the row number y:
for each integer field of the row
determine the column corresponding to the field
set y-th cell of the column to the field value
for each other field of the row
(omitted for brevity)
how to remove a row from a table:
mark the row number as free
include the row number in the list of free rows
how to read* all rows of the table:
for each row number from 0 to the maximum row number
if the row number is not marked as free
then read* the row
* = Insert any other action instead.
how to initialize a new table given the column types:
set maximum row number to 0
create an empty list of free row numbers
for each column
create a column record
initialize the column record
how to initialize a new column record:
choose the segment size as
(one variant, different options are discussed above)
maximum of (
minimal segment size in words / expected cell size,
expected table size / 100
) (this way each segment contains exactly 1% of bigger
tables, under the assumption that the expected size is
correct; if the table is expected to be small, we have less
segments with each having the minimal reasonable segment
size)
store the segment size
store an empty list of segments
how to pick any free row number:
if the list of free row numbers is empty
then increment the maximum row number of the table and

return it
else remove and return the first number from the list
how to add a field value to the x-th cell of a column:
the segment number y of the cell is x divided by the
segment size of the column
the cell number within the segment z is the remainder of
that division
if the column does not have a y-th segment then
determine a cell capacity sufficient for the field

value
create the segment with that capacity
set the z-th cell of the segment to the field value

US 9,092,470 B2

11

-continued

how to set the x-th cell of a column to a value v:

the segment number y of the cell is x divided by the
segment size of the column

the cell number within the segment z is the remainder of
that division

set the z-th cell of the y-th segment to the value v
how to set the x-th cell of a segment to a value v:

if the field value does not fit into the cell capacity of
the segment then

determine a cell capacity sufficient for the field

value
replace the segment by a new one with that capacity
binary code the field value into the x-th cell
how to create a segment with a given cell capacity:
create an array of cells
with the array length being the default segment size
and with the cells’ bit field being exactly wide enough
for the desired cell capacity
create a new segment containing this array
add the segment to the columns’ segment list (in last
position)
how to replace an old segment by a new one with a given
cell capacity:
determine the used cell capacity of the old segment
the new cell capacity is the maximum of the used capacity
and the given capacity
create a new segment with the new cell capacity
convert the cells from the old to the new segment
replace the old segment by the new one in the the
columns’ list of segments
if there is no automatic garbage collection:
free the memory allocated for the old segment
how to determine the used cell capacity of a segment:
result := 0
for each cell of the segment
determine the cell capacity x sufficient for the cell

value
if x > result
then result :=x
return result
how to convert the cells from an old segment to a new
segment:
both segments must have the same size
for each cell in the old segment
convert the cell value into the bit field width of the
new segment’s cells
write the converted value into the cell with the same
index in the new segment

Summary

In modern computer systems processing tabular data, such
as database management systems or other storage systems,
the problem of handling large tables in the limited available
memory of the underlying computer system is a difficult
issue. By viewing a table as a series of columns rather than
rows and using segmentation for the columns (based on equal
segment sizing), the preferred embodiment of the invention
takes a different approach as compared to the conventional
strategies. This in turn enables the provision of a mechanism
for efficient handling of large tables in limited memory and a
self-adapting mechanism to optimize the trade-offs with non-
uniform data.

It will be appreciated that as used herein, the terms system,
subsystem, engine, module, unit, programmed logic circuitry,
and the like, may be implemented as any suitable combina-
tion of software, hardware, firmware, and/or the like. For
instance, units and/or modules may be software controllable
in connection with processing resources (e.g., at least one
processor and a memory) of a computer system. [talso will be
appreciated that the storage locations herein may be any
suitable combination of disk drive devices, memory loca-
tions, solid state drives, CD-ROMSs, DVDs, tape backups,
storage area network (SAN) systems, and/or any other appro-
priate tangible non-transitory computer readable storage

10

15

20

30

35

40

45

50

55

60

65

12

medium. It also will be appreciated that the techniques
described herein may be accomplished by having at least one
processor execute instructions that may be tangibly stored on
a non-transitory computer readable storage medium.

What is claimed is:

1. A method of storing data, the method comprising:

dividing, in connection with at least one processor of a

column-oriented storage system including a tabular data
structure having columns and rows, at least one of the
columns of the tabular data structure into a plurality of
segments, wherein each segment has a plurality of cells
and an associated cell size which indicates the maximum
size of the data items in the respective segment;

when storing a data item into one of the segments,

determining, in connection with the at least one proces-
sor of the storage system, whether the size of the data
item exceeds the cell size of the segment; and

if the size of the data item exceeds the cell size of the
segment, adapting, in connection with the at least one
processor of the storage system, the cell size of the
segment to accommodate the size of the data item;

wherein the adapting of the cell size of the segment to

accommodate the size of the data item is performed

without concomitantly adapting the cell sizes of the

other of the plurality of segments.

2. The method of claim 1, wherein each segment has an
associated segment size which indicates the maximum num-
ber of data items in the respective segment.

3. The method of claim 2, wherein all segments of a column
have the same segment size.

4. The method of claim 2, further comprising determining
anoptimal segment size based on characteristics of the under-
lying hardware system.

5. The method of claim 2, further comprising determining
an optimal segment size based on statistics on the data stored
in the tabular data structure.

6. The method of claim 2, further comprising determining
an optimal segment size based on the frequency of addition,
update and / or removal operations performed on the data of
the tabular data structure.

7. The method of claim 2, wherein the determining of an
optimal segment size is performed automatically when data is
added, updated and/or removed, automatically and periodi-
cally, and/or manually.

8. The method of claim 1, wherein the columns of the
tabular data structure are stored one after the other in a work-
ing memory and / or persistent storage means of the storage
system.

9. The method of claim 1, further comprising providing a
dictionary data structure which maps data items to integer
values and storing the integer value in the tabular data struc-
ture instead of the data item.

10. The method of claim 1, wherein the adapting of the cell
size of the segment to accommodate the size of the data item
comprises selecting a minimum number of bits needed for
storing the biggest data item in the respective column.

11. The method of claim 4, wherein the characteristics of
the underlying hardware system include a bandwidth
between the working memory and the processor.

12. The method of claim 1, wherein at least one associated
cell size of one segment is different from the other cell sizes
of other segments.

13. The method of claim 1, further comprising:

storing the columns of the tabular data structure one after

the other in memory; and

determining an optimal segment size based on character-

istics of the memory.

US 9,092,470 B2

13

14. The method of claim 1, wherein each said cell of a
segment is of a common cell size.

15. A non-transitory computer readable storage medium
tangibly storing a computer program comprising instructions
for implementing the method of claim 1.

16. A column-oriented storage system for storing data, the
system comprising:

processing resources including at least one processor and a
memory;

adividing unit, under control of the processing resources of
the column-oriented storage system including a tabular
data structure having columns and rows, configured to
divide at least one of the columns of the tabular data
structure into a plurality of segments, wherein each seg-
ment has a plurality of cells and an associated cell size
which indicates the maximum size of the data items in
the respective segment;

a storage unit, under control of the processing resources,
configured to store a data item into one of the segments,
the storage unit being further configured to:
determine whether the size of the data item exceeds the

cell size of the segment; and

10

15

20

14

if the size of the data item exceeds the cell size of the
segment, adapt the cell size of the segment to accom-
modate the size of the data item;

wherein the adapting of the cell size of the segment to

accommodate the size of the data item is performed
without concomitantly adapting the cell sizes of the
other of the plurality of segments.

17. The system of claim 16, wherein each segment has an
associated segment size which indicates the maximum num-
ber of data items in the respective segment.

18. The system of claim 17, further comprising a first unit
configured to determine an optimal segment size based on
characteristics of the underlying hardware system.

19. The system of claim 17, further comprising a second
unit configured to determine an optimal segment size based
on statistics on the data stored in the tabular data structure.

20. The system of claim 18, wherein the characteristics of
the underlying hardware system include a bandwidth
between the working memory and the processor.

21. The system of claim 17, wherein all segments of a
column have the same segment size.

#* #* #* #* #*

